Exercise 8

Find the general solution for the following initial value problems:

$$
u^{\prime \prime}-6 u^{\prime}+9 u=0, \quad u(0)=1, u^{\prime}(0)=4
$$

Solution

This is a homogeneous linear ODE with constant coefficients, so the solution is of the form, $u=e^{r x}$.

$$
u=e^{r x} \quad \rightarrow \quad u^{\prime}=r e^{r x} \quad \rightarrow \quad u^{\prime \prime}=r^{2} e^{r x}
$$

Substituting these into the equation gives us

$$
r^{2} e^{r x}-6 r e^{r x}+9 e^{r x}=0
$$

Divide both sides by $e^{r x}$.

$$
r^{2}-6 r+9=0
$$

Factor the left side.

$$
(r-3)^{2}=0
$$

$r=3$ with a multiplicity of 2 . Therefore, the general solution is

$$
u(x)=C_{1} e^{3 x}+C_{2} x e^{3 x} .
$$

Because we have two initial conditions, we can determine C_{1} and C_{2}.

$$
\begin{array}{cl}
u^{\prime}(x)=e^{3 x}\left(3 C_{1}+C_{2}+3 C_{2} x\right) \\
u(0)=C_{1} e^{0}=1 & \rightarrow \\
u^{\prime}(0)=e^{0}\left(3 C_{1}+C_{2}\right)=4 & \rightarrow \\
C_{2}=1
\end{array}
$$

Therefore,

$$
u(x)=e^{3 x}+x e^{3 x}
$$

We can check that this is the solution. The first and second derivatives are

$$
\begin{aligned}
u^{\prime} & =e^{3 x}(4+3 x) \\
u^{\prime \prime} & =3 e^{3 x}(5+3 x) .
\end{aligned}
$$

Hence,

$$
u^{\prime \prime}-6 u^{\prime}+9 u=3 e^{3 x}(\not \boxed{z}+3 x)-6 e^{3 x}(4+3 x)+9 e^{3 x}(\not x+x)=0,
$$

which means this is the correct solution.

